Speaker Spotlight

David Ahles, P.E.

Principal Civil Engineer

Eastern Municipal Water District

Christian Sanders, P.E.
Environmental Engineer
CDM Smith

EMWD Brine Minimization Pilot Study

USING CCRO TO INCREASE OVERALL WATER RECOVERY IN A WATER REUSE APPLICATION

Dave Ahles Christian Sanders

December 7, 202.

About EMWD

- Sixth largest public water utility in California
- One of 26 member agencies of The Metropolitan Water District of Southern California (MWD)

ESTABLISHED IN 1950

SERVES:

WATER / WASTEWATER / RECYCLED

POPULATION:

839,000+

Water Supply Portfolio - 1990 and 2010

1990

Population served: 358,000

2020*

Population served: 850,000

^{*}Total Water Supply: 135,008 AF per EMWD Comprehensive Annual Financial Report, FYE 2020

Groundwater Reliability Plus Program

Proposed Purified Water Replenishment

Pilot Plant Site

Pilot Plant Site

SOUTHERN CALIFORNIA

CCRO Schematic

Figure 1A - CC operation cycle.

Figure 28 - PF operation cycle

MF: Key Design Parameters

Parameter	Units	Value
No. Trains		2
Membrane Make/Model		Toray HFU-2020AN
Membrane Material		PVDF
Manufacturing Process		Thermally Induced Phase Separation (TIPS)
Membrane Pore Size	μm	0.01
Max Instantaneous Flux	gfd	26
Minimum Design Recovery	%	90
Backwash Interval	min	45
Minimum CEB Interval	hr	24
Autostrainer Rating	micron	200
Feed Water Chemicals		Sodium Hypochlorite Liquid Ammonium Sulfate Sodium Bisulfite

MF Pilot Container

MF: Key Operating Details

Parameter	Units	Value
Operating Philosophy		Tank Level Control, Variable Flux
Operating Flux	gfd	9 to 26
Flow Rate per Train	gpm	20 to 57 gpm
Backwash Interval	min	45
Average System Recovery	%	~98
Typical CEB Interval	days	14

MF Long-Term Performance Data (Train 1)

MF Long-Term Performance Data (Train 2)

Example 24-hr MF Performance Data (Train 2)

CCRO: KEY DESIGN PARAMETERS

Parameter	Units	Value
No. Trains		1
Membrane Make/Model		FilmTec Fortilife CR100
Element Diameter	in	8
Membrane Material		Polyamide Thin-Film Composite
Minimum Salt Rejection	%	99.4
Average Flux	gfd	10
Permeate Flow Rate	gpm	70
Recovery	%	Variable
No. Stages		1
Cartridge Filter Rating	micron	1
Feed Water Chemicals		Antiscalant Sulfuric Acid

CCRO Influent WQ (10/28/20 to 03/3/21)

Parameter	Units	Avg	Max	No. Samples
Temperature	°C	20.1	23.4	8
Nitrate	mg/L as N	10.8	15.0	8
Phosphorus	mg/L as PO ₄	7.5	15.0	8
Sulfate	mg/L	171	210	8
Silica	mg/L	21	23	8
Calcium	mg/L	53.5	58.2	8
Alkalinity	mg/L as CaCO ₃	41.5	77.0	8
TDS	mg/L	611	660	8
Total Chlorine	mg/L	1.4	2.4	8

PHOSPHATE LEVELS CONTROLLED ANTISCALANT SELECTION AND TARGET FEED WATER pH

Feed Water Chemical Conditioning

CCRO – Normalized Permeate Flow vs ΔP

CCRO – Normalized Permeate Flow vs ΔP

THE REAL COLUMN

CCRO - Normalized Salt Passage

Membrane Autopsy Findings

Tail element pulled at completion of 1st extended run @ 94%

- Membrane was in very good visual condition upon arrival. A very light foulant deposition was observed on the membrane leaves.
- Initial wet testing found that the membrane flux to be ~2.68% below manufacturer's nominal specification
- Flat sheet testing with coupons:
 - After overnight soak in D.I. water, permeability increased by ~20% over the manufacturer's nominal specification. Salt rejection was within spec.
 - After high pH (~11.9) chemical clean, permeability increased significantly
 - After low pH (~1.7) chemical clean, permeability decreased slightly
 - Overall, membrane permeability increased by approximately 45% over the nominal specification. The salt rejection, when normalized for flux, was within specification.

SOUTH FOR CALLOUIN

Membrane Autopsy Findings

FEED END

CONCENTRATE END

FEED SPACER CLEAN AND INTACT

LIGHT FOULANT COLLECTED AFTER ADDITION OF WATER

Membrane Autopsy Conditions

- Test results suggest foulant was <u>organic</u>. SEM/EDS/SEI/PED analysis found no inorganic deposits on the membrane surface.
- Large increase in permeability not associated with oxidant damage:
 - Fujiwara test negative
 - Salt rejection within specification
- Membrane substantially more permeable than membrane specification.

Cost Analysis – Basis of Comparison

- Full-Scale Treatment Capacity = 2.0 mgd (2,000 AFY, 90% availability)
- Preliminary design (2018):
 - Conventional 3-stage RO to achieve 92.8% recovery
 - Average Flux = 12 gfd
 - Brine flow = 108 gpm
- Alternative: Full-Scale CCRO
 - Recovery = 94%
 - Average Flux = 10 gfd
 - Brine Flow = 89 gpm (~20% reduction vs conventional 3-stage design)

Cost Analysis – Key Assumptions

- Cost estimate compares CCRO vs 3-Stage RO equipment, feed water chemical conditioning, and brine ponds.
- All other project components (buildings, ancillary systems, pretreatment, etc.) are assumed to be identical.
- Labor costs assumed to be equal
- Operating costs include:
 - Power
 - Chemicals (sulfuric acid + antiscalant)
 - Replacement (5-yr membrane age assumed)
 - Maintenance (assume 2% of equipment cost)

SOUTH WATER OF THE STATE OF THE

Cost Analysis – CAPEX Estimate

- 3-Stage RO
 - Assume 2 x 2.0 mgd trains
 - \$2,400,000 (\$1,200,000 per train)

- CCRO
 - Assume 3 x 1.0 mgd trains
 - \$2,700,000 (\$900,000 per train)

Brine Ponds

- 2018 Preliminary Design Estimate = \$9,200,000 -
- 2021 Cost = \$10,580,000 (assuming 5% escalation)

AVG FLOW

108 GPM

Cost Analysis – NPV Estimate

Treatment Option	Category	Value		
Conventional 3-Stage RO	Annual O&M Costs	\$369,600		
	Capital Costs – 3-Stage RO	\$2,400,000		
	Capital Costs – Evaporation Ponds	\$10,580,000		
	30-yr NPV	\$26,508,000		
	Total Yield (30 years)	60,000 AF		
	NPV	\$442/AF		
CCRO	Annual O&M Costs	\$449,900		
	Capital Costs – 3-Stage RO	\$2,700,000		
	Capital Costs – Evaporation Ponds	\$8,718,700		
	30-yr NPV	\$28,033,000		
	Total Yield (30 years)	60,000 AF		
	NPV	\$467/AF		
89/108 * \$10.580.000				

9/108 * \$10,580,000

~18% Reduction

CCRO - Potential Enhancement Opportunities

- During the pilot, chemical feed conditioning based on worstcase phosphate levels (15 mg/L)
 - pH = 5.0
 - Antiscalant = 12 mg/L
- By monitoring phosphate levels in the tertiary effluent, pH and antiscalant dose could be optimized
- CCRO technology opens up the possibility for varying the feed water pH in line with recovery (i.e. reduce pH as recovery increases)

Observations and Conclusions

- Conservative MF operating parameters resulted in very reliable performance
- Stability of CCRO process similar to conventional RO treating this quality of feedwater and operating at 92-93% recovery
- CCRO capable of achieving ~30 days continuous operation between CIPs for recoveries up to 94%
- CIPs initiated based on ~15% loss in normalized permeate flow. Some reuse applications allow losses up to 20-25% prior to initiating CIPs

Observations and Conclusions

 Reliable pH monitoring/control critical to CCRO operation when phosphate is present. Advance warning systems and redundant instrumentation recommended.

 Membrane autopsy found evidence of organic fouling, but no significant mineral scaling

 30-yr NPV for conventional 3-stage RO < 30-yr NPV for CCRO even when considering smaller ponds

THANK YOU

CONTACT US

Dave Ahles, P.E.

Eastern MWD

Principal Civil Engineer

P: (951) 928-3777 ext. 4458

E: ahlesd@emwd.org

Christian Sanders, P.E.

CDM Smith

Environmental Engineer

P: (760) 710-4665

E: sanderscj@cdmsmith.com

Questions & Discussion

